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The evolution of spanwise phase variations of nominally two-dimensional instability 
modes in a plane shear layer is studied in a closed-return water facility using time- 
harmonic excitation having spanwise-non-uniform phase or frequency distributions. 
The excitation waveform is synthesized by a linear array of 32 surface film heaters 
flush-mounted on the flow partition. A spanwise-linear phase distribution leads to the 
excitation of oblique waves and to the rollup of oblique primary vortices. When the 
prescribed phase distribution is piecewise-constant and spanwise-periodic, the flow is 
excited with a linear combination of a two-dimensional wavetrain and pairs of equal 
and opposite oblique waves, the amplitudes of which depend on the magnitude of the 
phase variation A@. As a result of the excitation, the primary vortices undergo 
spanwise-non-uniform rollup and develop spanwise-periodic deformations that induce 
cross-shear and secondary vortices in the braid region. The amplitude of the 
deformations of the primary vortices and the shape and strength of the secondary 
vortices depend on the magnitude of A@. When A@ is small, the secondary vortices are 
counter-rotating vortex pairs. As A@ increases, cross-shear induced by oblique 
segments of the primary vortices in the braid region results in the formation of single 
secondary vortex strands. The flow is not receptive to spanwise phase variations with 
wavelengths shorter than the streamwise wavelength of the Kelvin-Helmholtz 
instability. When the phase variation is ASP = n, the flow is excited with pairs of 
oblique waves only and undergoes a double rollup, resulting in the formation of 
spanwise-deformed vortices at twice the excitation frequency. Measurements of the 
streamwise velocity component show that the excitation leads to a substantial increase 
in the cross-stream spreading of the shear layer and that distortions of transverse 
velocity profiles are accompanied by an increase in the high-frequency content of 
velocity power spectra. Detailed schlieren visualizations shed light on the nature of 
‘vortex dislocations ’ previously observed by other investigators. Complex spanwise- 
non-uniform pairing interactions between the spanwise vortices are forced farther 
downstream by spanwise-amplitude or phase variations of subharmonic excitation 
wavetrains. 

1. Introduction 
Experimental investigations of nominally two-dimensional plane shear layers have 

suggested that substantial spanwise deformations of the primary vortices can result 
from relatively small disturbances in the free streams. Of particular note are the flow 
visualization photographs of Chandrsuda et al. (1978) that show spanwise-non- 
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uniform pairing and branching of the primary vortices, presumably due to non- 
uniform entrainment from the quiescent side of a single-stream mixing layer. Although 
global features of unforced single- and two-stream mixing layers may be somewhat 
different, similar spanwise irregularities of the primary vortices were also observed in 
two-stream mixing layers. Browand & Troutt (1980, 1985) detected vortex ‘ termina- 
tions’ or ‘branches’ in time series of instantaneous spanwise profiles of the 
streamwise velocity. These patterns were attributed in a later paper (Browand & Ho 
1987) to spanwise-non-uniform pairing interactions between adjacent primary vortices 
due to slight spanwise variations in the free-stream velocities. This and other 
experimental evidence (e.g. Keller et al. 1988; Delville et al. 1989) indicate that 
the characteristic spanwise wavelength of the deformations of the primary vortices is 
typically larger than the streamwise wavelength of the Kelvin-Helmholtz instability 
A,, of the base flow. 

The evolution of the primary (spanwise) vortices in a plane mixing layer has been 
connected with the propagation and amplification of two-dimensional instability 
waves (e.g. Ho & Huerre 1984). The Strouhal number St, = Ov,/U, of the most 
amplified wave corresponds to the natural frequency v, of the mixing layer, where 8 is 
the momentum thickness, and the associated phase velocity U, is equal to the average 
velocity of the two streams (linear stability theory suggests that St ,  = 0.032). This 
implies that even small spanwise variations in U, can lead to significant spanwise phase 
distortions of the unstable wavetrain and, as a result, to spanwise-non-uniform rollup 
and deformations of the ensuing primary vortices. Such deformations are apparent in 
the flow visualization photographs of Lasheras & Choi (1988), which were taken in a 
shear layer having spanwise-non-uniform free-stream velocity distributions. 

Core deformations of the primary vortices can also be effected by the introduction 
of time-dependent spanwise phase perturbations at the trailing edge of the flow 
partition. Browand & Prost-Domasky (1990) and Dallard & Browand (1993) used a 
spanwise array of speakers to excite two adjacent spanwise segments of a two-stream 
mixing layer with time-harmonic wavetrains having slightly different frequencies. This 
excitation leads to the appearance of spanwise defects in time series of instantaneous 
spanwise profiles of the streamwise velocity that are similar to the unforced patterns 
previously observed by Browand & Troutt (1980, 1985). The defects first appear at 
spanwise positions corresponding to frequency discontinuities and are a precursor to 
the appearance of additional spanwise defects farther downstream. Because the two 
frequencies v2 and v, are very close (v2 = l.lu,), the two spanwise segments of the 
excitation waveform may be thought of as two almost identical wavetrains undergoing 
a slow time-periodic phase shift at the beat frequency u2 - v,. Hence, it may be argued 
that defects are formed at the beat frequency at spanwise phase discontinuities of the 
excitation waveform. 

It is important to recognize that the measurements of Browand and his co-workers 
were taken at a fixed cross-stream elevation near the outer edge of the mixing layer 
(Browand & Troutt 1980, 1985; Browand & Prost-Domasky 1990) and thus are 
the footprints of three-dimensional vortical structures within the layer. Three- 
dimensional vortical structures in a plane wake were studied by Meiburg & Lasheras 
(1988, 1990) and the evolution of defects or dislocations in this flow was extensively 
investigated by Williamson (1989, 1992). Such structures were also observed by 
Nygaard & Glezer (1990, see also Nygaard 1991) in a two-stream mixing layer 
subjected to spanwise-periodic phase excitation. As a result of the excitation, the 
primary vortices undergo spanwise deformation having a spanwise wavelength which 
typically exceeds A,, and induce secondary vortical structures, the shape and strength 
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of which vary with the spanwise phase change A@. In particular, when A@ = 7c, the 
primary vortices and the induced secondary vortices appear to be of comparable 
strength, and diamond-shaped vortex cells appear in the spanwise ( x , z )  plan view 
of the mixing layer. 

Spanwise instability modes of the shear layer that can lead to core deformations of 
the primary vortices have also been studied analytically and numerically. In an analysis 
of a shear layer modelled by an array of Stuart vortices, Pierrehumbert & Widnall 
(1982) identified two such instability modes resulting from interaction of a pair of 
oblique time-harmonic wavetrains having equal amplitudes and opposite wave 
angles. The first mode, referred to as ‘translative instability’, is spanwise- and 
streamwise-periodic. The authors conjectured that the translative instability can lead 
to the formation of streamwise vortices which had been previously observed in the 
experiments of Breidenthal(l981). In a related study, Corcos & Lin (1984) showed that 
the rollup of spanwise vorticity into a streamwise-periodic array of vortices can give 
rise to a translative core instability which allows spanwise perturbations to grow in 
such a way that all spanwise vortices are identically distorted. 

The second instability mode identified by Pierrehumbert & Widnall is subharmonic, 
can lead to spanwise-localized pairing of the primary vortices, and has a short- 
spanwise-wavelength cutoff, below which three-dimensional disturbances do not 
amplify. A similar instability was also observed in a numerical study of Ashurst & 
Meiburg (1988) and by E. Meiburg (personal communication, 1990) and is also 
apparent in the flow visualization of Lasheras & Choi (1988). In numerical simulations 
of a temporally evolving mixing layer, Comte & Lesieur (1991) investigated the 
evolution of the subharmonic instability and the topology of the streamwise vortices. 
They found that the introduction of small, random three-dimensional isotropic 
disturbances can lead to spanwise-non-uniform pairing of the primary vortices with a 
characteristic spanwise wavelength that is four times greater than the streamwise 
wavelength of the Kelvin-Helmholtz instability. The addition of two-dimensional 
disturbances leads to suppression of spanwise-non-uniform pairing, an in-phase 
waviness of the primary vortices, and the formation of streamwise vortices in the braid 
region. 

That deformations of the primary vortices are an important ingredient in the 
evolution of the flow, even at high speeds, was demonstrated by direct numerical 
simulations of compressible mixing layers (Sandham & Reynolds 1991). Using 
random noise as the initial condition, the authors found that oblique waves (which 
lead to the formation of oblique primary vortices) are the most rapidly amplified 
instabilities for convective Mach numbers, M ,  > 0.6. (While we are unaware of any 
other previous experiments in which a plane shear layer was forced with a time- 
harmonic oblique wavetrain, the low-speed experiments of Roos, Kegelman & Kibens 
1989 in a shear layer facility having a flow partition with a swept trailing edge clearly 
demonstrate the receptivity of the flow to oblique disturbances.) Sandham & Reynolds 
further propose that the nonlinear development of a single oblique wave and pairs of 
equal and opposite oblique waves leads to the formation of oblique vortices and pairs 
of staggered lambda vortices, respectively. 

The numerical and analytical investigations cited above clearly suggest that the plane 
shear layer is receptive to time-harmonic excitation having a spanwise-non-uniform 
phase distribution. Furthermore, experimental evidence indicates that spanwise phase 
distortion of two-dimensional instability modes can have dramatic effects on the rollup 
and evolution of the primary vortices. The present work builds on these findings and 
focuses on the evolution of three-dimensional vortical structures resulting from 
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\Heater mosaic 

FIGURE 1. Schematic drawing of the flow partition, heater array, schlieren view, and coordinate 
system. The heater array is composed of four spanwise-continuous elements upstream of a linear 
array of 32 elements. 

spanwise phase non-uniformities of the fundamental and subharmonic instabilities of 
the base flow. Section 2 contains a description of the experimental apparatus, the 
surface actuators used for synthesis of the excitation waveforms, and several 
programmes of spanwise-non-uniform phase excitation. The response of the mixing 
layer to fundamental and subharmonic phase excitation is described in Q 3, with 
emphasis on spanwise-linear and spanwise-periodic phase distributions. Concluding 
remarks are presented in 54. 

2. Experimental apparatus and techniques 
2.1. The experimental set-up 

The closed-return water shear layer facility and the ancillary diagnostic equipment are 
described in detail by Nygaard & Glezer (1991) (hereafter referred to as N&G). 
Excitation of streamwise and spanwise instability modes is accomplished by a linear 
spanwise array of 32 heating elements flush-mounted on the high-speed side of the flow 
partition (similar arrays of surface film heaters were used by Robey 1987 and Schneider 
1989 for the excitation of oblique waves in a flat-plate boundary layer). Each of the 
heating elements is wired to a DC power amplifier and can be independently driven 
from the laboratory computer via a D/A interface. The flow partition, heater mosaic, 
and coordinate system are shown schematically in figure 1. The heater mosaic is 
composed of four spanwise-uniform elements and a single 32-element spanwise array. 
The spanwise width of the mosaic is 22 ern and is equal to the spanwise of the test 
section. The refractive index gradients produced by surface heating are exploited for 
flow visualization by means of a sensitive schlieren system. The schlieren view is in the 
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FIGURE 2. Side (x,y)  and plan (x,z) views of the shear layer subjected to spanwise-uniform time- 
harmonic excitation. The side (a) and plan (b)  views are dye (injected at midspan) and schlieren 
visualizations, respectively. The two photographs have the same scale and were taken at the same 
phase relative to the excitation waveform. The flow is from left to right, and the free-stream velocities 
are 30 and 10 cm s-l. The grid in (a) is square and measures 2.54 cm on the side. The plan view in 
(b)  is 20.2 cm long and 13.2 cm wide (in the x- and z-directions, respectively). Its upstream edge begins 
at x = 1 cm. 

spanwise (x,y)-plane, consists of a circle 13.2 cm in diameter centred at midspan, and 
may be thought of as a planar projection of streaklines of slightly heated fluid elements. 
The flow is also visualized by dye. Fifteen equally spaced injection ports are available 
on each side of the flow partition. Simultaneous cross-stream or spanwise 
measurements of the streamwise velocity component are taken with a rake of 31 hot- 
wire probes, 2 mm apart, suitable for use in water. 

The response of the flow to spanwise-uniform time-harmonic excitation was 
extensively documented by N&G. In figure 2(a, 6) the excitation frequency is 5 Hz and 
the flow is photographed in the cross-stream (x, y)- and spanwise (x, 2)-planes. Figure 
2(a, b) is identical to figure 6(a, b) of N&G and is reproduced here for reference. The 
two photographs have the same scale and are taken at the same phase relative to the 
excitation waveform. The flow is from left to right, and the free-stream velocities are 
U,  = 30 cm s-l and U, = 10 cm s-l. In the (x, y)-plane (figure 2a), the flow is visualized 
by dye that is injected at midspan into the boundary layer of the low-speed stream. 

Figure 2 (b) is a composite of two partially overlapping phase-locked schlieren views 
in the (x, 2)-plane, which are centred at 7.6 cm and 15.2 cm downstream of the trailing 
edge of the flow partition so that in the composite view 1 < x < 21.8 cm (or 
0.25 < X d 5.45, where X = Rx/h,,, R = (Ul- U,)/Uc) .  At this excitation frequency, 
pairing of the primary vortices is inhibited in the streamwise domain shown here. The 
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primary vortex immediately downstream of the first roll-up (figure 2 b) is characterized 
by sharp intensity gradients along its upstream and downstream edges caused by the 
curvature of the relatively thin layer of heated fluid which is rolled into the vortex. Note 
the formation of naturally occurring streamwise vortices in the braid region between 
adjacent primary vortices, the slight spanwise distortions of the primary vortices, and 
the appearance of small-scale motion within their cores at the downstream end of the 
composite schlieren view. 

2.2. Phase excitation using surface heaters 
Owing to the quadratic dependence of Joulean dissipation on input voltage to the 
heaters, the spanwise distribution of input excitation power is given by 

E(z, t )  = E,(z) { 1 + cos [ ~ . x v ( z )  t + Q(z)]}, 

where E,(z) is the mean power, v(z) is the spanwise distribution of excitation frequency, 
and @(z) is the spanwise phase distribution. The linear heater array described in $2.1 
is used to synthesize a 32-element discretization of E(z, t),  where Eo(z), v(z), and @(z) 
are, in principle, arbitrary and can be programmed from the laboratory computer. 
While in the experiments of N&G, Eo(z) was spanwise-periodic and v(z) and @(z) were 
spanwise-uniform, the present experiments employ three phase programmes by varying 
the phase and frequency of a time-harmonic excitation wavetrain having a constant 
amplitude : 

(i) spanwise-linear phase distribution denoted @,,, ($2.2. l), 
(ii) spanwise-periodic phase distribution denoted Q S p  ($2.2.2), 

and 
(iii) time- and spanwise-periodic phase distribution denoted Q T s p  ($2.2.3) 

(spanwise-uniform phase distribution is referred to as QSu). 
Near the flow partition, phase distortions of the excitation wavetrain result in 

spanwise-non-uniform rollup and deformations of the primary vortices and in the 
concomitant evolution of secondary vortical structures ($6 3.1-3.4). The present work 
also shows that phase deformations can continue to occur downstream of the initial 
rollup of the fundamental (Kelvin-Helmholtz) instability as a result of spanwise-non- 
uniform pairing interactions of the primary vortices. These pairing interactions are 
induced by a superposition of fundamental and subharmonic excitation wavetrains 
where the fundamental wavetrain is spanwise-uniform and the subharmonic has 
spanwise-periodic phase and amplitude programs QSPPsh and ESPPsh, respectively 
(63.6). 

Finally, the effect of phase distortions on secondary counter-rotating vortex pairs 
that are triggered by upstream (amplitude) disturbances on the flow partition are 
studied using a linear superposition of two fundamental wavetrains having either 
spanwise-periodic amplitude (ESP) or phase ( Q S p )  distributions ($ 3.5). 

2.2.1. Spanwise-linear phase excitation QLIN 

Spanwise-linear phase distribution @(z) = /3z (where p = const) results in the 
excitation of a time-harmonic oblique wavetrain having a spanwise wavenumber /I. 
When GLIN is synthesized using a 32-element discretization by the linear heater array, 
E(z) is effectively piecewise-constant with phase increments A@ between adjacent 
heater elements (Robey 1987; Schneider 1989). In the present experiments /l< 
0.93 cm-l and thus A@ d 6n/32. The response of the shear layer to excitation with 
oblique waves is discussed in 0 3.1. 
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2.2.2. Spanwise-periodic phase distribution Q S P  

When @(z) is spanwise-periodic and piecewise constant, E(z, t )  is a linear 
superposition of a time-harmonic spanwise-uniform wavetrain and pairs of equal and 
opposite oblique waves. A spanwise-periodic and piecewise-constant phase distribution 
can be easily discretized by the heater array for any spanwise wavelength A, that is 
equal to the width of an integer number of heating elements. To define @(z), let 
z = zo+A,s, where zo is an arbitrary reference, A, is the spanwise wavelength, and 
0 6 s 6 1. Then, in each wavelength, @(z) = 0 for 0 6 s 6 s1 and s, 6 s 6 1 (where 
s, < s,) and @(z) = A@ for s1 6 s 6 s,. In the present experiments, A, is taken to be the 
width of 2, 4, 8, and 16 elements of the linear heating array, s,-ss, = 0.5, and 
0 6 A@ < 7c. 

With a spanwise-periodic phase distribution, E(z, t )  can be expanded in Fourier 
series, 

where 
E(z, t)  = Eo 11 + e(z, 41, 

e(z, t )  = cos (:A@) cos (wt +$A@) 

+sin ($A@) sin (wt +:A@) C. “ 4  sin( 2(2n - 1) 7c z ) .  
n=l n(2n - 1) 

Thus, for a given A@, E(z, t )  is a linear superposition of a time-harmonic spanwise- 
uniform wavetrain and pairs of equal and opposite oblique waves having spanwise 
wavenumbers /3, = 2(2n - 1) x/A,. The amplitudes of the spanwise-uniform and oblique 
wavetrains are proportional to cos (:A@) and sin ($A@), respectively (note that the 
amplitudes of each pair of oblique waves also decrease like l/n). Hence, when A@ = 0, 
E(z, t )  is a spanwise-uniform wavetrain and when A@ = 7c, E(z, t )  is a superposition of 
pairs of equal and opposite oblique waves only. A similar Fourier decomposition of a 
time-harmonic excitation wavetrain having a spanwise-periodic phase distribution was 
also used in the numerical simulations of Collis et al. (1991). 

As shown in $3.2, when A@ = n, there exists a short-wavelength cutoff, Acrit, below 
which E(z, t )  is not amplified. Thus, it may be argued that there is a corresponding 
cutoff spanwise wavenumber, Perit, such that pairs of equal and opposite oblique waves 
are attenuated when /3, 2 Pcrit: Hence, when A, is small, E(z, t )  is effectively a linear 
superposition of a two-dimensional wavetrain and a single pair of oblique waves, all 
at the same (excitation) frequency. 

2.2.3. Spanwise- and time-periodic phase distribution Q T S P  

Piecewise-constant and spanwise-periodic (with wavelength A,) frequency dis- 
tributions of the excitation wavetrain are used to approximate spanwise-periodic phase 
distributions where the phase difference between adjacent segments of the excitation 
waveform is slowly varying with time. Time-harmonic excitation wavetrains with 
piecewise-constant frequency distributions were used by other investigators (e.g. 
Browand and coworkers; Williams-Stuber & Gharib 1989) to effect dislocations of the 
primary vortices in a plane shear layer. If the spanwise frequency variation is 
Av = v2-v1  where v1 and v2 are the two (piecewise-constant) frequencies of adjacent 
segments of the excitation waveform, then the phase difference between these segments 
may be thought of as A@ = 2x(v, - vl) t if Av/v, + 1. This phase difference is varying 
with time between 0 and 27c over the beat period l / A v  on a timescale that is much 
longer than the .period of either forcing frequency. 
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t - A  A 

@(z> 
FIGURE 3. Time plots of spanwise distributions of (up&, t ) )  measured at x = 5.1 cm at the cross- 
stream elevation where U(x) = 20 cm s-'. The origins of successive profiles of (up&, t ) )  are equally 
displaced in time: (a) Qsu; (b) with /3 = 0.62 rad cm-'; ( c )  Qsp with A, = 7.62 cm, and A@ = 7c. 
The respective spanwise phase distribution is shown to the right of each plot. 

It is noted, however, that there is a fundamental difference between the evolution of 
the primary vortices depending on whether the time-harmonic excitation has piecewise- 
constant frequency or phase distributions. The circulation per unit streamwise length 
in the cross-stream plane of a nominally two-dimensional shear layer is spanwise- 
uniform, and the circulation over the streamwise wavelength of the two-dimensional 
instability A K H ,  is rz AUA,,. Hence, in a shear layer that is forced with a time- 
harmonic wavetrain having a piecewise-constant frequency distribution, the excitation 
wavelengths on either side of the frequency discontinuity are not equal and, 
consequently, while the circulations of adjacent segments of the primary vortices are 
time-invariant, they are not the same (e.g. Nassef & Browand 1993). On the other 
hand, when v = const and Q(z) is piece-wise-constant ($2.2.2), T is spanwise-uniform. 

Because rJT1 = 1 -Av /v , ,  the spanwise variation in the cross-stream circulation of 
the primary vortices diminishes with Au. In most of the present work, v1 = 4.9 Hz and 
v2 = 5.OHz, so that the beat period is 10 s, A v / v ,  = 0.02, and r2/Tl = 0.98. Hence, in 
spite of the slight spanwise variations in cross-stream circulation, it may be argued that 
the structure of the shear layer for a given spanwise-periodic and piecewise-constant 
phase distribution is virtually the same regardless of whether the excitation phase 
programme is Qsp or QTSP.  
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Programme 
U2lUl 

(cm s-') 

30/10 a = 1.57 cm-', /3 = 0.31, 0.62, 0.93 cm-I $3.1 

30/10 v1 = 4.9 Hz, v2 = 5 Hz, h, = 7.6 cm, h,/A,, w 1.9 
36/12 v1 = 6.9 Hz, v2 = 7 Hz, A, = 7.6 cm, A , / A K H  w 2.2 $3.2 

30/10 v1 = 4.9 Hz, v 2  = 5 Hz, A, = 10.2 cm, AJA,, w 2.5 
30/10 v = 5 Hz, A, = 5.1 cm, h,/hKH x 1.3 

30/10 v = 5 Hz, 6.25 > A, > 1.27, 1.6 > A , / A K H  > 0.3 

$3.3 

30/10 v1 = 4.9 Hz, v2 = 5 Hz, A K H  % 4 cm $3.4 

30/10} v = 5 Hz, A, = 5.1 cm, A,/hKH % 1.3 
30/ 10 

Phase programmes and corresponding experimental conditions 

53.5 

$3.6 

2.3. Efect of phase excitation on the flow 
The response of the flow to phase excitation near the trailing edge of the flow partition 
is shown in time plots of ensemble-averaged spanwise distributions of the streamwise 
velocity perturbation, ( upert(z, t)) (figure 3 a-c). (The ensemble-averaged streamwise 
velocity (u(x,  t ) )  is phase-locked to E(z, t) and (upert(x,  t ) )  = (u(x, t ) )  - U(x), where 
V(x)  is the mean flow velocity.) These data are measured at x = 5.1 cm and y = yo ( y o  
is the cross-stream elevation where U(x)  = U, = ;( U, + U,)). In figure 3, the origins of 
successive profiles are equally displaced in time, producing (z,  ?)-maps that capture 
spanwise features of the forced flow before the rollup of the primary vortices is 
completed. The centres of the dark bands correspond to extrema of (upert(z,  t ) ) .  The 
corresponding spanwise phase distribution of the excitation waveform is shown to the 
right of each time plot. 

When the phase of the excitation waveform is spanwise uniform (QSu, figure 3a), the 
flow appears to be reasonably two-dimensional. The dark bands in the ( z ,  ?)-maps have 
been associated by Browand and his co-workers with the passage of the primary 
vortices (Browand & Troutt 1980, 1985; Browand & Prost-Domasky 1990). In figure 
3(b), the excitation programme is GLIN,  @(z) = Pz, where /3 = 0.62 cm-l and results 
in a spanwise-oblique phase distribution of (upert(z,  t ) ) .  Furthermore, the dark bands 
in the (z ,  t)-map imply the rollup of oblique primary vortices. In figure 3 (c),  the phase 
distribution is spanwise-periodic @,, with A@ = 7c, A, = 7.62 cm (i.e. equal to the 
width of 12 heating elements) such that @ = 0 at the centre 6 elements. This excitation 
waveform corresponds to a family of equal and opposite oblique waves ($2.2.2), and 
leads to spanwise-periodic phase discontinuities of ( upert(z, t ) )  at the excitation 
wavelength, A,. Figure 3(c) suggests that rollup of the primary vortices occurs in 
spanwise segments of constant phase. 

The phase programs and corresponding experimental conditions that are used 
throughout the present manuscript are summarized in table 1. 

3. Spanwise-non-uniform phase excitation 
As discussed in $ 1, experimental observations indicate that phase distortions of the 

nominally two-dimensional instability modes in a plane shear layer can lead to 
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significant distortions of the ensuing primary and secondary vortical structures. In 
most of these investigations, phase distortions resulted from unknown (and 
uncontrolled) disturbances in the free streams. Controlled excitation of phase 
disturbances in the plane shear layer has been limited to time-periodic phase distortions 
by means of spanwise variations of the forcing frequency (Browand & Prost-Domasky 
1990; Nassef & Browand 1993) and to passive excitation of oblique instability modes 
by means of geometrical alterations in the flow partition (Roos et al. 1989). 

The present investigation focuses on the effect of controlled phase excitation on the 
evolution of the primary and secondary vortices. Near the flow partition, phase 
distortions of the excitation wavetrain result in spanwise-non-uniform rollup and thus 
in deformations of the primary vortices that persist throughout the present domain of 
observation; these are discussed in $9 3.1-3.5. Experimental evidence (Browand & Ho 
1987; Keller et al. 1988; Delville et al. 1989) indicates that phase distortion of the base 
flow is not merely a near-field phenomenon and, given its characteristic spanwise 
wavelength, it appears to be connected with amplification of subharmonic modes. 
Thus, it is conjectured that far downstream of the flow partition, the excitation is 
effected through the amplification of a hierarchy of fundamental and subharmonic 
instability modes of the two-dimensional base flow. In $3.6 it is shown that phase 
distortions and deformations of the nominally two-dimensional base flow can continue 
to recur far downstream from the flow partition through spanwise-non-uniform 
subharmonic (pairing) interactions of the primary vortices. 

In most of the present experiments, the free-stream velocities are 30 and 10 cm s-l 
and the excitation frequency is 5 Hz. The streamwise domain of observation is 
1 d x d 21.8 cm, or 0.25 d X d 5.45 where X = Rx/h,,, R = (Ul- U,)/U,. The 
measurements of N&G were taken up to x = 25.4 cm (i.e. X = 6.35) where x / d t e  z 423 
(Ote is the momentum thickness at the trailing edge of the flow partition) and where the 
Reynolds number based on the local momentum thickness of the unforced flow is 
Re, = 1450. It is also noted that typical Reynolds numbers associated with small-scale 
transition in liquid shear layers fall in the range 750 < Re, < 1700 (Ho & Huerre 1984). 

3.1. Spanwise-linear phase excitation 
The effect of a spanwise-linear phase distribution, @(z) = /3(z-zo) (where zo is an 
arbitrary reference), is studied using flow visualization. The resulting excitation 
waveform is a time-harmonic oblique wavetrain (shown schematically in figure 4 a) 
having streamwise and spanwise wavenumbers, a = 2nv/U, and p. In the present 
experiments, 01 z 1.57 cm-l and the responses of the flow to excitation with /3 = 0.31, 
0.62, and 0.93 em-' are shown in figure 4(b, c, d), respectively. The corresponding wave 
angles, $ = arctan @/a), between the wave vectors and the streamwise direction are 
11.2", 21.5", and 30.6" (in what follows, $ > 0 if /? > 0). It should be recognized 
that, unlike excitation of two-dimensional waves, the excitation of oblique waves in a 
two-dimensional base flow gives rise to a three-dimensional vorticity perturbation field 
with important consequences for the evolution of the excited flow. This was 
demonstrated for a flat-plate boundary layer by Hama et al. (1987), and by Robey 
( 1 987). 

The most striking feature in figure 4(b-d) is the formation of primary vortices that 
are oblique in the spanwise (x,z)-plane of the shear layer and are advected in the 
streamwise direction. The angles between the oblique vortices and the streamwise 
direction are virtually identical to the corresponding wave angles of the excitation 
wavetrains and remain almost invariant throughout the streamwise domain shown 
here. In what follows, successive primary vortices downstream from the flow partition 
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FIGURE 4. Excitation with spanwise-linear phase distribution. Schematic drawing of the oblique 
wavetrain is shown in (a); the response of the flow to excitation with u = 2xv/Uc E 1.57 cm-' and 
/3 = 0.31, 0.62, and 0.93 cm-l ($ = 11.2", 21.5", and 30.6", respectively) is shown in the (x,z) 
composite schlieren photographs (b),  (c),  and (d) ,  respectively. 

2-2 
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are referred to below and in figure 4(b-d) as V,, V,, V, etc. As can be seen on the left- 
hand side of each photograph, the rollup of V, occurs along a line of constant phase 
of the excitation wavetrain. The rollup clearly does not occur simultaneously along the 
axis of each vortex, as for the two-dimensional case, but progresses obliquely as the 
vortex is advected downstream. 

It is apparent from the present and other flow visualization photographs that the 
rollup at any position along the axis of V, in figure 4(b-d) starts at the same streamwise 
station, x = x,. Furthermore, because x, is approximately the same in each of figures 
4(b)-4(d),  it may be concluded that spatial amplifications of all oblique waves over the 
range of spanwise wavenumbers considered here are almost identical. When /3 exceeds 
0.93 cm-l, it is observed that the flow is no longer locked to the excitation wavetrain 
and a streamwise-regular pattern of oblique vortices does not exist. This, however, 
does not necessarily imply that, for /3 > 0.93 cm-l, oblique waves are not amplified in 
the plane shear layer because, in the present experiments, the receptivity of the flow- 
partition boundary layers is inherently coupled to that of the ensuing shear layer. The 
results of Schneider (1989) indicate that the amplitude of oblique waves in a flat-plate 
(Blasius) boundary layer measured at a streamwise position corresponding to 
Re,, = 1300 is almost invariant for q? < 15", and decreases by an order of magnitude 
for 15" < yk < 25". 

The streamwise inclination of the primary vortices is apparently accompanied by a 
change in the direction of the strain field in the braid region between them, compared 
to the two-dimensional case. As a result, secondary vortices that are formed in the 
braid region are approximately aligned with the wave vector of the excitation 
wavetrain. In the absence of phase excitation, only a few weak secondary vortices 
appear in the braid region between V, and V, (see figure 2b). However, as p is 
increased, secondary vortex pairs in the braid region between V, and V, become more 
pronounced (e.g. figure 4b, c). These vortex pairs are clearly associated with the rollup 
of V, in that they continue to form in the braid region as the rollup of V, progresses. 
While the amplitude of E(z, t )  is spanwise-uniform, Q L I N  is piecewise-constant due to 
a 16-element discretization, which leads to spanwise phase discontinuities, A@ = 1.27/3, 
each having a spanwise width equal to the width of two heating elements (12.7 mm). 
Although the secondary vortices are formed only after the rollup of V,, they are clearly 
triggered by spanwise discontinuities of the excitation waveform, as is evident from 
their spanwise spacings and apparent strength. 

The formation and orientation of the secondary vortices are extremely sensitive to 
deformations along the axes of the primary vortices, as can be seen in the braid regions 
between V, and V, in figure 4(c, d). The primary vortices appear to be more susceptible 
to such deformations as p is increased, and the characteristic wavelength of these 
deformations is longer than the streamwise wavelength of the Kelvin-Helmholtz 
instability. When /3 = 0.93 cm-' (figure 4 d ) ,  the primary vortex at the downstream 
edge of the schlieren view exhibits a bifurcation that is also apparent in the photograph 
of Chandrsuda et al. (1978, their figure 3). Similar bifurcations can also be inferred 
from the data of Browand & Prost-Domasky (1990) and were observed by Nygaard & 
Glezer (1990) as a result of spanwise-non-uniform phase excitation. As will be shown 
in the following subsections, such deformations can arise from interactions between 
two-dimensional and oblique instability waves. 

We next consider the temporal evolution of a train of oblique vortices resulting from 
excitation by an oblique wavetrain in an unbounded two-stream two-dimensional 
shear layer. If 2 is taken to be parallel to the wave vector of the excitation wavetrain, 
j is the cross-stream coordinate, and z" is normal to the (Z,j)-plane (i.e. parallel to the 
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axes of the oblique vortices, see figure 4a). Then the velocity and vorticity components 
in the ?-direction, G and [, are given by 

and 

respectively (S. C. Crow, personal communication, 1992). These equations imply that, 
in the absence of viscosity, the 2-velocity and vorticity components of fluid elements 
within the primary vortices and in the braid region remain unchanged. Because the 
oblique vortices are advected in a shearing flow, their induced velocity field acts to 
move high-speed (or low-speed) fluid down (or up) from higher (or lower) cross-stream 
elevations toward the braid region. The streamwise velocity of the fluid that is moved 
from the free streams has components in the 2- and 2-directions thus establishing a 
secondary shear layer across the braid region in the %direction due to the cross-stream 
difference in G. Therefore, it appears that if the secondary oblique shear layer is strong 
enough, it may lead to the respective strengthening and weakening of the counter- 
rotating legs of the secondary lambda vortices and to the formation of single clockwise 
or counterclockwise secondary vortex strands. The formation of clockwise or 
counterclockwise secondary vortex strands as a result of cross-shear has also been 
reported by Atsavapranee & Gharib (1 994) in a time-developing stratified mixing layer 
and is further discussed in $$3.2 and 3.4. 

3.2. Spanwise-periodic phase excitation : eflects of A@ and A, 
When the phase distribution of the excitation waveform is spanwise-periodic and 
piecewise-constant, E(z, t )  is a linear superposition of a time-harmonic spanwise- 
uniform wavetrain and pairs of equal and opposite oblique waves having spanwise 
wavenumbers p ,  = (2n - 1) 2n/A, (cf. $2.2.2). In particular, recall that, when A@ = 0 
or X, E(z, t )  is a spanwise-uniform wavetrain or a superposition of pairs of oblique 
waves, respectively. In this section, we discuss the effects of A@ and A, on the evolution 
of the flow. 

Figure 5 (a-i) is a sequence of (x ,  z )  composite Schlieren photographs (as in figure 2b)  
for which the phase programme of the excitation wavetrain is @,,, (cf. $2.2.3) where 
the spanwise wavelength is A, = 7.6 cm, and the (piecewise-constant) frequencies of the 
excitation wavetrain are v1 = 4.9 Hz and v2 = 5.0 Hz. The photographs are taken 
phase-locked to the beat frequency v2-v1 at 1 s intervals around the time 
corresponding to A@ = .n (half the beat period, figure 5e). The corresponding 
increments in A@ are 0 . 2 ~ .  The piecewise-constant frequency distribution of the 
excitation wavetrain is v1 for 2 0 -  1) A,/2 < z < (2j- 1) A,/2 and v2 for (2j- 1) A,/2 < 
z < jAz ,  wherej = 1,2, .. . and v(z) is symmetric about midspan. In the (x, z )  plan view 
of figure 5(a-i), the frequency of the centre segment of the excitation wavetrain 
(- 1.9 < z < 1.9 cm) is 4.9 Hz. Phase-locking is accomplished by a conditional trigger 
derived from a logical ‘ A N D ’  of two pulse trains each corresponding to zero-crossings 
(with a positive time derivative) of one of the excitation wavetrains. The resulting pulse 
train has a frequency v2 - v1 and is time-delayed to achieve a desired phase relative to 
the data acquisition clock. 

At a given time, say t = to, the wave fronts of all segments of the excitation waveform 
are in phase. Because the frequency of the centre segment is slightly lower (v, = 4.9 Hz) 
than the frequency of the two adjacent (outer) segments, the centre segment of the 
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FIGURE 5 (a-e). For caption see facing page. 
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FIGURE 5. Excitation with time- and spanwise-periodic phase distribution aTSP (v, = 4.9 Hz, v2 = 5.0 
Hz, and A, = 7.6 cm). The (x, z )  composite schlieren photographs were taken phase-locked to the beat 
frequency of the two excitation wavetrains at 1 s time intervals. The frequency of the centre segment 
(- 1.9 < z < 1.9 cm) is 4.9 Hz, and A@ is: (a) 0 . 2 ~ ,  (b) 0.4q (c) 0.6n, ( d )  0 .8~ ,  (e) X, cf) 1.2n, (g) 1.4a, 
(h) 1.6a, and (i) 1 . 8 ~ .  

excitation waveform develops a phase lag with respect to the outer segments when 
t > to .  Because the difference between v2 and v1 is small, streamwise amplifications of 
adjacent segments of the excitation wavetrain are virtually identical, and the subsequent 
rollup of corresponding segments of the primary vortices occurs at different times at 
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the same streamwise position downstream of the flow partition. As a result of the 
spanwise-non-uniform rollup, adjacent spanwise segments of the primary vortices 
become distorted at spanwise positions corresponding to phase discontinuities of @(z). 
When A@ < 7c (figure 5 a d ) ,  the centre segment of the excitation waveform lags in 
phase relative to the outer segments, and the primary vortices develop an upstream 
bend around midspan. When A@ > 7c (figure 5f-i), the centre segment leads in phase 
relative to the outer segments, and the primary vortices develop a downstream bend 
about midspan. For example, in figure 5(g), the centre segment of the excitation 
waveform leads in phase relative to the outer segments, and the rollup of the centre 
segment of the primary vortex (on the left-hand side) occurs before the rollup of the 
outer segments. 

The deformations of the primary vortices are clearly proportional to the magnitude 
of A@. Even when A@ is relatively small (figures 5a, b, 5h, i), the undulations of the 
primary vortices persist and even appear to intensify with downstream distance. 
Because the primary vortices in an unforced plane mixing layer are advected in a 
nominally two-dimensional strain field, they deform in a plane that is aligned with the 
direction of maximum strain, and the amplitudes of their deformations can 
increase with downstream distance. An important consequence of these deformations 
is the appearance of secondary vortex strands that connect upstream and downstream 
bends of consecutive primary vortices through the braid region. These vortices are 
formed as a result of the spanwise discontinuities in the excitation waveform, and their 
evolution is affected by flow along the oblique segments of the primary vortices as 
discussed in more detail in 53.4. When A@ is relatively small (e.g. figures 5b, 5h), a pair 
of secondary vortices appears on each side of an upstream (or downstream) bend of 
the primary vortices. (The formation of multiple secondary vortices near spanwise 
distortions of the primary vortices was also observed by Lasheras, Cho & Maxworthy 
1986 and by N&G.) As A@ increases (figures 5c, d , f ,  g) ,  the secondary vortices on 
each side of an upstream bend of the primary vortex merge at their downstream edges 
and form a stronger lambda-shaped vortex that has its head symmetrically centred at 
and downstream of the bend of the primary vortex. Each lambda vortex resides in the 
braid region, and, hence, is inclined in the (x,y)-view relative to the streamwise 
direction. 

When A@ = 7c (figure 5 e), the flow is effectively forced by pairs of oblique waves each 
of equal magnitude and opposite angle without the presence of the two-dimensional 
excitation wavetrain. The secondary and primary vortices appear to be of equal 
strength, and they form (in the x,z view) a pattern of diamond-shaped cells. The 
streamwise length and spanwise width of each cell (measured between its edges) are 
A,, and A,, respectively. Similar structures are also apparent in numerical simulations 
of time-evolving compressible (Sandham & Reynolds 199 1) and incompressible (Collis 
et al. 1994) mixing layers that are forced by a pair of oblique waves at the fundamental 
frequency. As shown in $3.3, the spanwise rows of the diamond-shaped cells are 
composed of adjacent pairs of spanwise vortices that are strongly deformed at the 
excitation wavelength A, in planes that are rotated around the z-axis. The deformation 
amplitude of each vortex is equal to or exceeds :A,,, and the cell-like appearance 
results from spanwise offset of the deformations of adjacent vortices by :A,. The 
passage frequency of each pair of vortices is equal to the excitation frequency and 
hence the number of spanwise vortices is actually doubled. These vortical structures 
are reminiscent of the subharmonic spanwise-localized pairing mode identified by 
Pierrehumbert & Widnall(l982). However, in contrast to the present observations, the 
subharmonic instability of Pierrehumbert & Widnall has a streamwise wavelength that 
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is twice that of the two-dimensional base flow. Collis et al. showed that when A, is 
large enough, the deformed vortices may undergo pairings at spanwise locations 
corresponding to streamwise edges of the diamond-shaped cells. 

When A@ > n, the secondary vortical structures weaken and again become pairs of 
hairpin-like counter-rotating vortices (figure 5f-i). Because the wavetrain in the centre 
segment is now leading in phase relative to its adjacent segments, the centre segment 
of the primary vortex is symmetrically bent around midspan in the downstream 
direction. The secondary vortices appear near upstream bends corresponding to the 
outer segments, and they are displaced in the spanwise direction by $4, compared to 
secondary vortices resulting from phase excitation with A@ < n. Finally, as A@ 
approaches 2n, the spanwise vortices become almost two-dimensional again. 

The present results are compared with the observations of Browand and his 
coworkers (Browand & Troutt 1980,1985; Browand & Prost-Domasky 1990) by using 
a time series of spanwise profiles of the streamwise velocity component to capture 
spanwise features of the primary vortices. For these measurements, the free-stream 
velocities are increased to 36 and 12 cm s-l, v1 = 6.9 Hz, v2 = 7.0 Hz, and A, = 7.6 cm. 
The measurements are taken at equally spaced spanwise positions along 
-4.5 < z < 4.5 cm at x = 10.2 cm and at a y-elevation corresponding to a spanwise- 
and time-averaged streamwise velocity of 30 cm s-l. Time series of the streamwise 
velocity are sampled phase-locked to the beat frequency v2 - v1 such that each data 
record includes 4480 samples equally spaced over the beat period. Ensemble-averaged 
profiles of the velocity perturbation (~ , , ,~(z , t ) )  are calculated from 40 such data 
records and are shown in figure 6 during one beat period (10 s) of the two excitation 
wavetrains. At t = to, the flow is nominally two-dimensional but as A@ increases, the 
primary vortices begin to develop spanwise undulations of wavelength A,. (Note that, 
because time increases from left to right, the bend in the centre segment of the spanwise 
vortex points to the right.) The effect of the secondary vortices apparent in figures 
5(a, b, d, e )  is not felt at this cross-stream elevation until their strength becomes 
comparable with the primary vortices ( t  - to > 3 s). 

When t -  to = 5 s (A@ = n), it is not possible to distinguish between the ‘secondary’ 
and ‘primary’ vortices, and a spanwise-cellular vortex structure emerges. The centre 
segment appears to be ‘dislocated’ (a ‘vortex termination’ in the parlance of Browand 
& Troutt 1980, 1985) from the outer segments. When A@ > n, the secondary vortical 
structures weaken (as can be affirmed by their induced velocity perturbations), and the 
spanwise undulations of the primary vortices are essentially out of phase with respect 
to the undulations for A@ < n. Although A@ varies linearly in time, the spanwise 
response of the flow as shown in figure 6 is not exactly symmetric in time with respect 
to t -  to = 5 s, for which A@ = n. This is probably the result of a small spanwise phase 
distortion already present in the nominally two-dimensional base flow (cf. figure 2 b). 
These data indicate that the ‘dislocations’ observed in the work of Browand and his 
coworkers are clearly connected with three-dimensional distortions of the primary 
vortices. 

The subharmonic instability mode identified by Pierrehumbert & Widnall (1982), 
which can lead to spanwise-localized pairing of the primary vortices, has a short- 
spanwise-wavelength cutoff below which three-dimensional disturbances do not 
amplify. In connection with this finding, we note that whenever spanwise deformations 
of the primary vortices are apparent in previous experimental investigations of 
unforced mixing layers, the characteristic lengthscales of these deformations exceed 
A K H .  In the present experiments, we consider the effect of A, on the evolution of the 
primary vortices for A@ = n (corresponding to excitation with pairs of equal and 
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2017 6 t < 3017 

3017 < t < 4017 

4017 < t < 5017 

5017 < t < 6017 

60/7 < t < 10 

t 6) * 
FIGURE 6. Time plots of spanwise distributions of (upeTt(z,  t ) )  during the 10 s beat period of Q T S P  with 
v1 = 6.9 Hz, vg = 7.0 Hz, and A, = 7.6 cm. The frequency of the centre segment (- 1.9 < z < 1.9 cm) 
is 6.9 Hz. The free-stream velocities are 36 and 12 cm s-l, x = 10.2 cm, -4.5 < z < 4.5 cm, and the 
y-elevation corresponds to U = 30 cm ssl. 

opposite oblique waves only). The free-stream velocities are 30 and 10 cm s-l, and the 
excitation frequency is 5 Hz (corresponding to A,, = 4 cm). 

The response of the flow is shown in the sequence of (x , z )  schlieren photographs 
(1 < x < 14.2 cm) in figure 7(a-e), corresponding to A, = 6.35, 5.08, 3.81, 2.54 and 
1.27 cm, respectively. When A, > 5.08 cm > A,, (figure 7a,b), the spanwise vortices 
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FIGURE 7. Schlieren plan (x, z )  views (3.6 < x < 16.8 cm) showing the effect of A, on the evolution of 
the primary vortices for asp with A@ = z and Y = 5 Hz. The excitation wavelengths in (a-e) are 
A, = 6.35, 5.08, 3.81, 2.54, and 1.27 cm, respectively. 
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form the diamond-shaped cells, as in figure 5(e). The spanwise width of each cell is 
approximately equal to A,. When A, = 0.95AK, (figure 7c), the cells are replaced by 
pairs of lambda-shaped vortices, and spanwise distortions of the primary vortices 
are substantially reduced. When A, < A,,, the primary vortices become almost 
spanwise-uniform, and no secondary vortices appear in the braid region, indicating 
the existence of a short-wavelength cutoff, A,,, for excitation with pairs of equal 
and opposite oblique waves. Although the response of the shear layer is clearly 
coupled to the response of the upstream boundary layer, the presence of sharp 
spanwise gradients in the phase-averaged distributions of streamwise velocity before 
the rollup of the primary vortices is completed (figure 3c), suggest that the cutoff 
results from the rollup of the shear layer. Figure 7(c, d )  indicates that A,, z A,,, 
and, since A,, z (U,  + U,)/2u, the corresponding cutoff spanwise wavenumber is 
/3,, z 47cu/(U1+ U,). That A,, scales with A,, implies that A,, increases with 
downstream distance and that phase disturbances of a given spanwise wavelength 
gradually decay as they are advected downstream. 

3.3. Excitation with pairs of equal and opposite oblique waves 
In this section, we examine in more detail some of the drastic changes in the structure 
of the plane mixing layer when A@ = x and the passage frequency of the spanwise 
vortices is effectively twice the excitation frequency. The overlay of upstream and 
downstream bends of successive spanwise vortices at the corners of the diamond- 
shaped cells (cf. figure 5e) suggests a double rollup of the vortex sheet that forms 
downstream of the flow partition. This double rollup is studied using a high-speed 
video movie taken at 1000 frames s-l. The excitation and flow conditions are the same 
as in figure 5 (a-i), where the frequencies of the centre (- 2.55 < z < 2.55 cm) and two 
adjoining segments of the excitation waveform are 4.9 and 5 Hz, respectively, except 
that A, = 10.2 cm for improved resolution. Figure 8 includes a sequence of 10 video 
frames at 20 ms time intervals (corresponding to one period of the 5 Hz excitation 
waveform) centred in time around A@ = x (i.e. during this sequence A@ changes 
between 0.98n and 1.02~).  

In figure 8(a), the rollup of the centre segment of the primary vortex CS,, which is 
forced at 4.9 Hz, is just beginning on the left-hand side. The centre segment of the 
primary vortex that rolled up in the previous cycle of the excitation waveform, CS,, is 
A,, downstream from CS, and appears to bifurcate symmetrically about midspan into 
upstream and downstream oblique branches, each connected to the ‘outer’ segments 
of the primary vortices at the upper and lower edges of the photograph. The segments 
0s on each side of midspan are (approximately) +AKH upstream and downstream 
relative to CS,. As the rollup of CS, continues (figure s t i d ) ,  there is also a rollup of 
an oblique upstream branch of each of the segments 0s. As shown in $3.4, each of 
these branches loops above a neighbouring downstream branch of 0s and is stretched 
toward CS, (marked by an arrow in figure 8 c). In figure 8 (e), each of the upstream 
branches appears to be connected to CS, (ostensibly close to the low-speed side owing 
to the velocity field induced by CS,). In figure 8 ( f ) ,  upstream branches begin to roll 
up at each spanwise edge of CS, and near the top and bottom of the frames in figure 
8 U; g )  (recall that these 0s form approximately half the excitation period after CS,). 

Figure 8 (g ,  h )  indicates that the rollup of the upstream and downstream branches at 
each spanwise edge of CS, continues and, as a result, CS, in figure 8(b-d) separates 
into two distinct vortical cores. The evolution of these cores is further confirmed by dye 
visualization (figure 9b), where the dye is injected at midspan of the low-speed 
boundary layer and thus through the centre of CS, in the (x ,  y )  plan view. (Figure 9a 
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FIGURE 8. Ten frames from a high-speed (1000 frames s-l) schlieren movie (in the x, z-plane). The 
excitation and flow conditions are the same as in figure 5(u-i) (except that A, = 10.2 cm). The 
frequencies of the centre (-2.55 < z < 2.55 cm) and the two adjoining segments of the excitation 
waveform are 4.9 and 5 Hz, respectively. The frames (a-j) are taken 20 ms apart and are centred in 
time around A@ = K. 
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FIGURE 9. Dye (injected at midspan) visualization in the cross-stream (x, y)-plane: (a) spanwise- 
uniform excitation; (6) A@ = n (A, = 5.1 cm) showing the double rollup of the spanwise vortices. The 
grid in (a) and (b) is square and measures 2.54 cm on the side. The vertical axis is at x = 0. 

corresponds to spanwise-uniform excitation and is shown for reference.) Because 
adjacent segments of the excitation waveform have almost the same frequency and 
presumably the same streamwise amplification, the double rollup of each spanwise 
segment begins at the same distance downstream from the flow partition. However, 
since adjacent segments of the excitation waveform are out of phase (i.e. A@ = z), the 
double rollup alternates at twice the excitation frequency between segments centred at 
z = f j h ,  and at z = f ( jA ,  +:A,) (j = 0,1,2, ...). In figure 5(e), the double rollup 
occurs at each corner of the diamond-shaped cells, thus leading to the formation of two 
separate spanwise-undulated vortices during each period of the excitation waveform. 
These vortices are undulated in planes that are tilted around the z-axis relative to the 
streamwise direction so that their downstream bends are at higher cross-stream 
elevations than their upstream bends. Each pair of adjacent vortices is offset in the z- 
direction by $A,, and thus CS, in figure S(c) and the corners of the diamond-shaped 
cells in figure 5(e) are overlays of downstream and upstream edges of the undulated 
vortices. 

Some features of the flow when A@ = +IT and n (figures 10a and lob ,  respectively) 
are studied using cross-stream distributions of the streamwise velocity component 
measured at a number of equally spaced streamwise stations at z1 = 0, z z  = zl+&, 
and z3 = z1 +$A,. These measurements are taken when the excitation frequency is 5 Hz 
and spanwise-uniform ( A K H  w 4 cm) and the (time-invariant) spanwise phase pro- 
gramme is QSP with A, = 5.1 cm. Similar to figures 5(a-i) and S(a-j), @(z) is 
symmetric about z = 0, and the phase discontinuity occurs at z,. In fact, comparison 
of figure 10 (a, b) with figure 5 (a-i) shows that the structure of the shear layer for phase 
programmes QSP and GTSP is virtually the same for a given A@ even though the 
cross-stream circulation of the primary vortices varies slightly across frequency dis- 
continuities of the excitation waveform. While A@ for figure 10(a) falls between A@ of 
figures 5(c) and 5(d) ,  the similarity between figures 10(b) and 5(e)  is clearly apparent. 
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FIGURE 10. Schlieren plan (x, z)  views showing the effect of phase programme @sp with v = 5.0 Hz, 
A, = 5.1 cm, and A@ = +7t (a), and K (b) (zl, z2, and z3 are spanwise measurement stations). 

Figure 11 (a, b) shows perspective contour plots of phase-averaged turbulent 
fluctuations, ( uErms( y, t)) (computed relative to the pseudo-mean instantaneous 
velocity (Glezer, Katz & Wygnanski 1989)), measured at zl, z,, and z3 at x = 15.2 cm 
during two periods of the excitation wavetrain. When the excitation waveform is 
spanwise-uniform (figure 11 a, z = zl), passage of the spanwise vortices at the 
measurement station can be recognized by concentrations of small-scale velocity 
fluctuations. At this streamwise position, the cross-stream distribution of ( u&) 
within the spanwise vortex exhibits a fairly broad peak near the low-speed side. 

When A@ = n (figure 1 1 b), the planes z = z1 and z3 are (y, t )  cross-sections through 
successive streamwise corners of the diamond-shaped cells in the (x, y) plan view of 
figure 5 (e), while the plane z = z ,  is a ( y ,  t )  cross-section through the sides of these cells 
halfway between z1 and z3. Concentrations of (uLrms) in the planes z = z, and z3 are 
reasonably similar and are offset in time by half the excitation period. While y- 
elevations of the centres of the vortical structures in the planes z = z1 and z3 alternate 
in time between the high- and low-speed sides of the shear layer, the centres of 
successive cross-sections in the plane z = z ,  have approximately the same y-elevations. 
Figure 11 (b) also shows that concentrations of (u;,,J in each of the (y, t)-planes 
appear twice during each excitation cycle, reaffirming the observation that, when 
A@ = n, there is a double rollup of the spanwise vortices. The centres of the cores of 
the spanwise vortices are outlined by dashed lines, showing the overlay of upstream 
and downstream bends of successive spanwise vortices at x = z, and z3. 

The streamwise amplifications of velocity perturbations at the forcing frequency and 
its first harmonic are determined from distributions of their cross-stream integrated 
amplitudes, A, (x ,  z) and A,(x, z) ,  respectively, without further decomposition into 
spanwise modes. Figure 12(a) shows A ,  (closed symbols) and A ,  (open symbols) for 
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FIGURE 1 1 .  Perspective contour plots of (uE,,,(y, t ) } ,  measured at zl, z2,  and z3 (cf. figure 10a) at 
x = 15.2 cm during two periods of the excitation wavetrain: (a) GSu (at z = zJ ;  (b)  BSp with 
A@ = K (the centres of the cores of the spanwise vortices are outlined by dashed lines showing the 
overlay of upstream and downstream bends of successive spanwise vortices at z1 and zJ. Contours 
start at 0.25 cm s-', with contour increments of 0.25 cm s-l. 

A@ = 0 (spanwise-uniform excitation), fn, and n. Figure 12(b) shows corresponding 
distributions of the momentum thickness 

1 r m  

where AU = :( V,  + U,) and the absolute value of the integrand is used to prevent 
artificial reduction in the magnitude of the momentum thickness due to distortions of 
the mean velocity profile U(X).  In figures 12(a) and (b), the data corresponding to 
spanwise-uniform excitation were obtained at z = z1 and are replotted at z = z2 and z3 
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FIGURE 12. Streamwise distributions at zl, z2, and z3 of (a) cross-stream integrated amplitudes A,@, y )  
(closed symbols) and A,(x,z)  (open symbols) of up,,,(z, t )  at Y and 2v; and (b) O(x,z): GSu (circles); 
@sp with A@ = in (triangles), and A@ = n (squares). 

for reference. When A@ = 0, A ,  and 0 increase somewhat between x = 5.1 and 7.6 cm 
and then remain almost unchanged through x = 15.2 cm, where A ,  begins to decay. 

Streamwise distributions of A ,  and 0 at z = z ,  and z3 for A@ = 7c are quite similar 
because, apart from a phase shift, the flow is virtually identical at these cross-stream 
planes. The distributions of A ,  at z = z, and z3 indicate that the perturbation wavetrain 
is amplified for x < 7.5 cm, followed by saturation at x z 7.5 cm and a slight decay for 
7.5 < x < 15 cm (where the double rollup occurs). The amplification of the wavetrain 
at the fundamental frequency continues for x > 15 cm through to the end of the 
streamwise domain considered here. The momentum thickness of the forced flow at 
z = z, and z3 is substantially larger than the momentum thickness of the unforced flow. 
Although the streamwise rate of increase of 0(x,z) diminishes slightly for 10 < x < 
15 cm, at x = 17.8 cm, the momentum thickness of the forced flow at z = z ,  and z3 
(and hence at z = fjh,/2 (j = 0,1,2, ...)) is approximately 120 % greater than for 
A@ = 0. At z = z2, the excitation wavetrain has a local minimum, and A,(x) and B(x) 
are quite different from the corresponding distributions at z ,  and z,. While A ,  is 
amplified for x < 7.6 cm and then undergoes saturation (at x x 10.2 cm) followed by 
attenuation, 19 exhibits a small decrease at x w 10.2 cm followed by a small increase for 
x > 10.2 cm. It is remarkable that, at z = z2,  0(x)  for A@ = 0 and 7c are almost identical 
for x > 10 cm. 

In contrast to the case A@ = n, there is considerable disparity between respective 
streamwise distributions of A ,  and 0 at z = z,  and z3 when A@ = an. This disparity is 
noteworthy because the frequencies of adjacent segments of the excitation waveform 
and, presumably, their streamwise amplifications are approximately the same. The 
differences between A,(x)  at z = z, and z3 are apparently related to the different y-  
elevations of the cores of the spanwise vortices at these (x, y)-planes. Recall that, when 
A@ < IT, the spanwise vortices are undulated in planes that are tilted around the z-axis 
relative to the flow direction. Hence, ( x ,  y) sections through downstream (at z = z,) and 
upstream (at z = z3) bends of these vortices are closer to the high- and low-speed edges 
of the shear layer, respectively. At z = z2, the cores of the primary vortices are not 
significantly displaced in the cross-stream direction relative to the case of spanwise- 
uniform excitation, and the streamwise amplification of the excitation wavetrain is 
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FIGURE 13. Composites of cross-stream contour plots of P(v,y)  and profiles of U ( y , x )  measured at 
zl, z2, and z, at x = 10.2 (a, c, and e), and 15.2 cm (b, d, andfl:  aSu at z1 (a, b);  QSp with A@ = $r 
(c,  d )  and with A@ = x ( e , f ) .  Contour increments are logarithmic, starting at cm2 s?, and the 
ratio of consecutive contours is 
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qualitatively similar to that of the two-dimensional wavetrain even though the levels 
of A ,  at corresponding streamwise stations are higher for the latter. While the 
distributions of O(x) for A@ = 0 and fn are almost identical at z = z ,  and z3, at z = zl, 
O(x) for A@ = fn is closer to O(x) for A@ = n. This indicates that distortions of U( y ,  x )  
near the low-speed side (associated with upstream bends of the primary vortices) have 
a smaller effect on O(x) than corresponding distortions near the high-speed side 
(associated with downstream bends of the primary vortices). Even though a direct 
comparison of momentum thickness for A@ = kn and x between the present 
experiments and the simulations of Collis et al. is not possible because the numerical 
data are spanwise-averaged, there is a qualitative agreement between their results and 
the distributions of O(x) at z = z3.  

Composites of cross-stream contours of power spectra, P(v, y ) ,  and profiles of 
U(y ,  x) at z = z,, z,, and z3 are shown for x = 10.2 and 15.2 cm, respectively in figure 
13(a, b) (spanwise-uniform excitation, measured at z1 only), figure 13(c, d )  (A@ = in), 
and figure 13(e,f) (A@ = 7c) .  When the excitation waveform is spanwise uniform, the 
distributions of P(v, y )  have pronounced peaks at the excitation frequency and some of 
its higher harmonics and do not vary substantially between x = 10.2 and 15.2 cm. A 
cross-stream band of high-frequency spectral components near the low-speed edge of 
the mixing layer is associated with the presence of small-scale motion and corresponds 
to concentrations of ( u ~ ~ ~ ~ )  in figure 11 (a). 

When the flow is forced with A@ = :n (figure 13c, d )  and n (figure 13d, e) ,  the 
evolution of the secondary vortical structures is accompanied by the appearance of 
small-scale motion near cross-stream distortions of U( y )  at the high- and low-speed 
edges of the shear layer (cf. N&G). For A@ = $n (figure 13c, d )  this is evidenced by 
bands of spectral components at higher frequencies near the high- and low-speed edges 
at z3 (the head) and z ,  (the tail), respectively. When A@ = n (figure 13e,f), the cross- 
stream width of the mixing layer increases considerably (particularly at z = z1 and z3) 
with a corresponding spreading in cross-stream concentrations of high-frequency 
spectral components. A noteworthy feature of P(v,y) at x = 15.2 cm (figure 13f) is the 
two broad bands near the high- and low-speed edges of the layer that are consistent 
with the double rollup of the shear layer into pairs of vortices of the same sign and 
(presumably) of equal strength. The substantial increase in cross-stream concentrations 
of small-scale motion when A@ = fn and n indicates that phase excitation can lead to 
mixing enhancement. In fact, the simulations of Collis et al. show that the spanwise- 
averaged mixedness in substantially increased from A@ = in  to A@ = n. 

3.4. Spanwise-isolated phase discontinuity 
The spanwise symmetry of the secondary vortices in $3.2 (e.g. figure 5c, d )  is 
associated with the spanwise-periodicity of the excitation waveform. In this section, we 
focus attention on the evolution of an isolated step discontinuity in the phase of the 
excitation waveform in the absence of adjacent discontinuities. A spanwise step change 
in phase leads to a localized distortion of the primary vortices and a concomitant 
formation of secondary vortex strands. Unlike a spanwise-isolated amplitude 
perturbation (as may be effected by a ‘point’ disturbance on the flow partition), a 
spanwise phase discontinuity can result in a single clockwise or counterclockwise 
secondary vortex strand that lacks the symmetry of the lambda vortices discussed in 
$3.2. In what follows, the phase discontinuity occurs at midspan ( z  = 0) between two 
spanwise-uniform segments of E(z, t). As in $3.2, the frequencies of adjacent segments 
are 5 Hz (for z < 0) and 4.9 Hz (for z > 0), and A@ is measured relative to the 
segment z < 0. Figure 14(a-g) is a sequence of (x ,  z )  schlieren photographs 
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(3.6 < x < 16.8 cm) that are taken under the same conditions as in figure 5(b-h), 
respectively (A@ = x in figure 14d). In figure 14(h) the excitation waveform has no 
spanwise phase or frequency variations but there is a step discontinuity in amplitude 
at midspan. This figure is included for reference and will be discussed further below. 

In figure 14(a-c) (A@ = 0.4q 0 . 6 ~  and 0.8q respectively), E(z > 0, t) lags in phase 
relative to E(z < 0, t). In figure 14(e-g) (A@ = 1.27c, 1.4x and 1.6n, respectively), 
E(z > 0, t )  leads in phase relative to E(z < 0, t). As a result, adjacent spanwise segments 
of the primary vortices become distorted near midspan due to spanwise-non-uniform 
rollup. For A@ < x (or A@ > x), rollup of the segments z < 0 (or z > 0) of the primary 
vortices occurs before rollup of the adjacent segments z > 0 (or z < 0). For example, 
figure 14(f) (A@ = 1.4.n) shows an incomplete rollup on the left-hand side. Near the 
phase discontinuity ( z  = 0), the primary vortices develop an upstream bend and 
become almost antisymmetric about midspan (there is a slight spanwise offset in figure 
14a, b). The most noteworthy features in figure 14(a-g) are the nearly oblique 
segments of the deformed primary vortices and the appearance of secondary vortices 
in the braid region between these segments. The length of the oblique segment L and 
the angle between its axis and the z-axis (using the notation of figure 4a) increase with 
A@ and reach a maximum when A@ = x ( L  z 1.2hK, and $ z in). 

The spanwise projection of each oblique segment, which is a measure of the domain 
of influence of the spanwise discontinuity of the excitation waveform, increases only 
slightly with A@ and is approximately equal to 0.88hK, for A@ = x. By comparison, 
measurements of the streamwise velocity perturbations for A@ = x (figure 3 c) indicate 
that, before the rollup of the primary vortices is completed, the spanwise spreading of 
the disturbance resulting from the phase discontinuity is smaller than 0.2hK,. The 
apparent increase in the width of the spanwise domain, which is affected by the phase 
discontinuity as the rollup of the primary vortex progresses, is connected with the 
limitation on the local curvature of its core (or the minimum bending radius) at the 
upstream and downstream edges of the oblique segment. This radius clearly scales with 
the local shear-layer vorticity thickness (or the core diameter of the primary vortices). 
As can be seen in figure 14(a-g) when A@ increases, this radius decreases along with 
the core diameter of the oblique segment of the primary vortex. When A@ = x, the core 
diameter of each vortex branch near midspan is smaller than the core diameter of the 
undisturbed primary vortex. 

The distortion of the primary vortices is accompanied by the formation of secondary 
vortices in the braid region between the oblique segments and the degree of inclination 
of the secondary vortices relative to the x-axis depends on the magnitude of A@. (Note 
the symmetry between figures 14a and 14g, 14b and 14f, and 14c and 14e.) The rollup 
of the secondary vortices begins near an upstream bend of a primary vortex (at the 
high-speed edge) and continues through the braid region toward the downstream bend 
of the subsequent primary vortex (at the low-speed edge). This is demonstrated in 
figure 1 4 0  which shows a partially rolled-up secondary vortex (marked with an 
arrow). The apparent ‘termination’ of this vortex strand is caused by the fact that 
planar vortex sheets (marked with slightly heated fluid) are not visualized by the 
schlieren system. 

When A@ is small, the secondary vortices are lambda-shaped counter-rotating 
vortex pairs. Figure 14(a) shows such a pair where the upper leg (in the x,z-view) is 
rotating counterclockwise and the lower leg is rotating clockwise when viewed in the 
(x, 2)-plane in the streamwise direction. As A@ increases, the oblique segments of the 
primary vortices induce a localized secondary shear flow in the braid region (in the 
negative %direction of figure 4a), which is ‘favourable’ to the clockwise leg and 
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‘adverse’ to the counterclockwise leg. As a result, the counterclockwise leg is weaker 
and, in figure 14(c), it almost disappears. At the same time, the clockwise leg becomes 
stronger and, when A@ = x, it is almost indistinguishable from the oblique segment of 
the primary vortex. Similarly, in figure 14(e,f), the induced secondary shear layer in 
the braid region has a velocity component in the positive 2-direction (figure 4a). As 
A@ increases further (figure 14e), the lower (clockwise) vortex leg becomes weaker and 
disappears from the braid region and the counterclockwise segment becomes stronger. 
The sense of rotation of the remaining legs of the secondary vortices in the braid region 
(i.e. clockwise when A@ < x and counterclockwise when A@ > x) was verified using 
high-speed video photography and is shown schematically in figure 15(a, b). 

As A@ approaches K (figure 14d), the secondary vortices and the oblique segments 
of the primary vortices appear to be of equal strength. (We note that when A@ is time- 
invariant in an unbounded flow, the circulation over AKH in the (x, y)-plane z = 0 must 
be the same as in (x, y)-planes on both sides of the phase discontinuity.) Each segment 
of a primary vortex below (or above) midspan bifurcates into a pair of upstream and 
downstream branches of approximately equal length. These branches are connected 
below (or above) midspan to neighbouring segments of the primary vortices 0.5hK, in 
the upstream and downstream directions (shown schematically in figure 15 c). Flow 
visualization indicates that, in the (x, z )  plan view of a pair of branches, the upstream 
branch loops above the downstream branch while the centres of the primary vortices 
above and below midspan remain at the same cross-stream elevation (figure 15c). 
Figure 14(f) further suggests that the vortex bifurcation is not stable and continues 
along the axes of the spanwise vortices. In fact, when the phase programme is OTSp and 
A@ < x (or > x) (e.g. figure 5), strong lambda-shaped vortices are formed through the 
merging of adjacent counter-rotating pairs of secondary vortex strands each induced 
by a phase discontinuity of the excitation wavetrain. Recent dye-visualization studies 
in a plane shear layer (Nassef & Browand 1993) and some measurements in a cylinder 
wake (Williamson 1992) indicate that such bifurcations are accompanied by spanwise 
flow along the axes of the primary vortices. 

Previous experimental work (e.g. Lasheras et al. 1986) has shown that an isolated 
(point) disturbance in the flow partition’s boundary layer results in the formation of 
secondary lambda-shaped counter-rotating vortex pairs in the ‘ braid’ region between 
primary vortices. These disturbances can be synthesized by spanwise variations in the 
amplitude of a time-harmonic excitation having spanwise-uniform phase and frequency 
distributions (N&G). As shown above, the secondary vortices resulting from a phase 
discontinuity when A@ is small, are very similar to the lambda-shaped vortices studied 
by N&G. However, when A@ is large enough, each secondary vortex pair evolves into 
a single vortex due to the secondary shear flow in the braid region. To amplify this 
point, the flow conditions in the (x,z)-view in figure 14(h) are the same as in figure 
14 (a-g), but the amplitude of the excitation waveform is piecewise-constant with a 
spanwise discontinuity at midspan and with no spanwise variations in phase or 
frequency. Unlike the phase discontinuity in figure 14(a-g), an amplitude discontinuity 
of the excitation waveform results in the formation of a single secondary lambda- 
shaped vortex, without an appreciable deformation of the primary vortex. 

3.5. The eflect of phase distortion on the secondary vortices 
The experiments of N&G have shown that time-harmonic excitation with a spanwise- 
periodic amplitude distribution ESP, leads to the formation of secondary counter- 
rotating vortex pairs having spanwise spacings that are equal to the excitation 
wavelength, A,. The included angle A between the legs of these lambda-shaped vortices 
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FIGURE 15. Schematic drawings of vortex connections when A@ < R 

and A@ = K (c). 

decreases with decreasing A,, and they can be formed at virtually any spanwise 
wavelength synthesizable by the heating mosaic. N&G noted that, when A, > hKH, the 
primary vortices develop spanwise deformations at the excitation wavelength (e.g. 
figure 16a where A, = 5.1 cm and v = 5 Hz). These deformations are considerably less 
apparent when A, < / I K H .  Because the phase of the excitation wavetrain is spanwise 
uniform, it appears that the phase distortion that leads to upstream bends of the 
primary vortices (figure 16a) is induced by the formation of the streamwise vortices 
upstream of the first rollup of the primary vortices. The subsequent spanwise 
modifications of the strain field in the braid region between adjacent primary vortices 
result in an increase in A farther downstream and in the appearance of additional 
secondary vortices on each side of the original secondary vortex. 
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FIGURE 16. Composite schlieren plan (x,z) views showing the effect of phase distortions on the 
secondary vortices (A,  = 5.1 cm, v = 5 Hz): (a) spanwise-periodic amplitude distribution ESP, (b)  
D S p  = @'(z) leading to the same deformations of the primary vortices as in (a);  ( c )  excitation with ESP 
and Q S p  = -@'(z). 

In this section, it is shown that spanwise deformations of the primary vortices 
resulting from the appearance of secondary vortices can be suppressed (or cancelled) 
by external phase excitation. Furthermore, the suppression of the deformations of the 
primary vortices has a significant effect on the evolution of the secondary vortices. A 
time-harmonic excitation waveform having spanwise-uniform amplitude and frequency 
distributions is used along with video-imaging to determine a spanwise-periodic phase 
distribution @'(z) that leads to the same distortions of the primary vortices as in figure 
16(a). The effect of phase excitation with @'(z) is shown in figure 16(b). While the core 
deformations of the primary vortices in figures 16(a) and 16(b) are reasonably similar, 
the secondary vortices in figure 16(b) are fully formed downstream of the first primary 
vortex on the left-hand side (and only partially rolled up upstream of that vortex). In 
common with figure 16(a) (and figure 5h, i), figure 16(b) also shows the formation of 
secondary vortex pairs on each side of the upstream bends of the primary vortices. 

Figure 16(c) shows the response of the mixing layer to an excitation waveform 
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having spanwise-periodic amplitude distributions ESP (as in figure 16 a)  and phase 
distribution @(z) = - W(z). The excitation is effected by a single row of surface heaters 
and is not a linear superposition of the excitation waveforms of figure 16(a, b). This 
is in contrast to the two-dimensional boundary-layer experiments of Liepmann, Brown 
& Nosenchuck (1982), where a linear disturbance excited by an upstream surface 
heater was cancelled by a phase-delayed input to a downstream surface heater. As a 
result of the modified (phase-corrected) excitation, the spanwise deformations of the 
primary vortices are almost completely suppressed, and the primary vortices remain 
almost undistorted throughout the streamwise domain shown in figure 16(c). As in 
figure 16(a), the secondary vortices are formed upstream of the first rollup of the 
primary vortices, where they appear to be unaffected by the spanwise phase of the 
excitation waveform. However, in the absence of the deformations of the primary 
vortices, the included angle A of the secondary vortex pairs remains almost unchanged 
with downstream distance compared to figure 16(a), and the additional secondary 
vortices that are present in figure 16 (a,  b )  are virtually absent. Furthermore, there is 
a noticeable diminution in small-scale motion within the core of the primary vortex at 
the downstream end of figure 16(c) compared to figure 16(a). This suggests that, in the 
absence of spanwise deformations, the cores of the primary vortices are more stable 
and that the onset of small-scale transition occurs farther downstream. 

3.6. Subharmonic phase excitation 
In the experiments described so far, phase excitation is effected at the fundamental 
(most-amplified) frequency of the shear layer and results in spanwise-non-uniform 
rollup and, consequently, in deformations of the primary vortices, with significant 
effects on their downstream evolution and on the formation of secondary vortices. 
Experimental observations (e.g. Keller et al. 1988; Delville et al. 1989) suggest that 
even far downstream from the domain of the initial rollup, the primary vortices 
continue to undergo complex spanwise deformations. These deformations apparently 
result from spanwise-non-uniform pairing interactions which, in the unforced shear 
layer, have been associated with the amplification of instability waves at subharmonics 
of the fundamental frequency. In this section it is demonstrated that spanwise-non- 
uniform pairings can be forced by a subharmonic wavetrain having spanwise-non- 
uniform phase or amplitude distributions. 

To this end, the flow is excited by a linear superposition of a spanwise-uniform 
wavetrain at the fundamental frequency and a subharmonic wavetrain having 
spanwise-periodic and piecewise-constant amplitude (figure 17 a )  or phase (figure 17 b) 
programmes. The respective amplitude and phase distributions of the subharmonic 
wavetrains in figure 17(a, b)  have the same spanwise wavelength A, = 20.3 cm with a 
discontinuity at midspan. The fundamental excitation wavetrain results in a nominally 
spanwise-uniform rollup of the primary vortices while the lower streamwise 
amplification rate of the subharmonic wavetrain leads to pairings of the primary 
vortices farther downstream. As shown in figure 17(a, b), spanwise non-uniformities in 
either the amplitude or phase distributions of the subharmonic wavetrain can result in 
spanwise-non-uniform pairings. In the present experiments, the free-stream velocities 
are increased to 42 and 14 cm-l so that the fundamental frequency is 9 Hz and 
A,, = 3.1 cm (for the subharmonic wavetrain, AKH+ = 6.2 cm). 

In figure 17 (a),  the phase of the subharmonic wavetrain is spanwise-invariant, and 
its amplitude distribution ESpPsh is Ensh(z) = 1 .OE, for z < 0 (i.e. below midspan in the x, 
z-view) and Ensh(z) = 0.3E0 for z > 0 (En is the amplitude of the fundamental 
wavetrain). The higher amplitude of the subharmonic wavetrain for z < 0 leads to the 
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FIGURE 17. Composite schlieren plan ( x , z )  views where the excitation wavetrain is a linear 
combination of a spanwise-uniform fundamental and a spanwise-periodic subharmonic (sh); (a) 
ESP-,, with A, = 20.3 cm (EOsh = E, for z < 0 and EOsh = 0.3E0 for z > 0 ) ;  (b) @p,,-,, with A@ = x and 
A, = 20.3 cm, and (c) @sP-sh with A@ = n and A, = 10.2 cm. The free-stream velocities are 42 and 
14 cm s-' and v = 9 Hz. 

occurrence of pairings of the primary vortices below midspan farther upstream than 
above midspan. The non-uniform pairing results in spanwise core deformations of the 
primary vortices and a substantial increase in small-scale motions within their cores at 
the downstream end of the schlieren view. After the pairings below and above midspan 
are completed, the (paired) spanwise vortices are branched about midspan in a manner 
reminiscent of figure 15 ( c ) .  In figure 17 (a), however, the streamwise distance between 
two connected segments of paired primary vortices below and above midspan depends 
on the magnitude of Eosh(z) (assuming that the streamwise amplification rate of the 
subharmonic wavetrain does not vary across the span). 

In figure 17(b), the phase programme of the subharmonic wavetrain is aSspPsh with 
A@ = n (relative to the segment z > 0) and its amplitude is spanwise-invariant (1.e. the 
subharmonic wavetrain is a linear superposition of pairs of equal and opposite oblique 
waves. Assuming that the streamwise amplification rates of adjacent segments of the 
subharmonic wavetrain are the same, then pairing of the spanwise vortices above and 
below midspan begins at approximately the same distance downstream of the flow 
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partition. Because of the phase change across midspan, the pairings alternate above 
and below z = 0 every half-period of the subharmonic wavetrain. These pairing 
interactions are similar to Pierrehumbert & Widnall's (1982) subharmonic instability, 
as demonstrated in figure 17(c) where the spanwise wavelength of the subharmonic 
wavetrain is reduced to 10.2 cm and phase discontinuities occur at z = 5.1, 0, and 
- 5.1 cm. Figure 17(c) shows two pairing interactions centred at midspan and AKH-sh 
apart, and two other pairing interactions, each centred at z = f 5.1 cm (near the top 
and bottom edges of the schlieren view) and offset by i$l,,-,, in the streamwise 
direction relative to the pairing interactions at midspan. Of particular note is the 
increase in small-scale motion at the spanwise locations of the pairing interactions. 

The photographs in figure 17 (a-c) demonstrate that spanwise-non-uniform pairing 
and core deformations of the primary vortices far downstream from the flow partition 
of an unforced plane mixing layer can result from spanwise non-uniformities of 
amplitude and phase of subharmonic disturbances. This may explain the wide variety 
of spanwise-non-uniform pairing interactions that are apparent in plane mixing layers 
in the absence of deliberate excitation (e.g. Chandrsuda et al. 1978; Browand & Troutt 
1980, 1985 and Keller et al. 1988). 

4. Concluding remarks 
The present investigation is concerned with the receptivity of the plane shear layer 

to perturbations resulting from spanwise phase variations of the fundamental and 
subharmonic instability modes of the nominally two-dimensional base flow. Phase 
perturbations are excited using time-harmonic wavetrains having spanwise-non- 
uniform phase or frequency distributions. Near the flow partition, phase distortions of 
an excitation wavetrain at the fundamental frequency result in spanwise-non-uniform 
rollup and core deformations of the primary vortices that persist throughout the 
present domain of observation. It appears that phase distortions and deformations of 
the base flow can continue to recur farther downstream through spanwise-non-uniform 
subharmonic (pairing) interactions of the primary vortices. An important consequence 
of the deformations of the primary vortices is the formation of secondary vortical 
structures in the braid region where their orientation and strength depend on the shape 
and degree of the deformation of the primary vortices. 

Excitation with a spanwise-linear phase distribution (i.e. an oblique wavetrain) leads 
to the rollup of oblique primary vortices that are advected in the streamwise direction. 
The angles between the oblique vortices and the streamwise direction are virtually 
identical to the corresponding wave angles of the excitation wavetrain and remain 
almost invariant throughout the streamwise domain of observation ( X  < 5.45). The 
rollup of the primary vortices occurs along lines of constant phase of the excitation 
wavetrain and progresses obliquely as each vortex is advected downstream. Because 
the onset of oblique rollup for /3 < 0.93 cm-I occurs at approximately the same 
streamwise location, it is concluded that the streamwise amplification of oblique waves 
for which $ < 30" is approximately the same. The streamwise inclination of the 
primary vortices is accompanied by a change in the direction of the principal strain in 
the braid region between them and, as a result, secondary vortices that are triggered by 
discretization discontinuities in the phase of the excitation waveform are approximately 
aligned with the wave vector of the excitation wavetrain. 

Spanwise-periodic core deformations of the primary vortices are excited when the 
phase distribution of the excitation wavetrain is piecewise-constant (with a phase 
discontinuity A@) and spanwise-periodic (with wavelength AJ. The excitation 
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waveform is a linear superposition of a two-dimensional time-harmonic wavetrain and 
a series of pairs of equal and opposite oblique wavetrains having wavenumbers that 
increase like n and amplitudes that decrease like l/n (n = 1,2, ...). The amplitudes of 
the two-dimensional and oblique wavetrains also vary with A@ such that when A@ = 0 
and n the oblique and two-dimensional wavetrains vanish, respectively. For any linear 
combination of two-dimensional and oblique excitation wavetrains there is a short- 
wavelength cutoff A,, below which the primary vortices are not receptive to the 
excitation input. In particular, when A@ = n, the primary vortices become unstable 
when the excitation wavelength exceeds h K H ,  or the spanwise wavenumber is below 
/3 = 4nv/(U1 + U J .  That the cutoff wavelength scales with A,, implies that A,, 
increases with downstream distance and that phase disturbances of a given spanwise 
wavelength gradually decay as they are advected downstream. 

Distortions of the primary vortices that result from phase variations of the excitation 
waveform are accompanied by the formation of secondary vortex strands. The 
evolution of these vortex strands depends critically on the magnitude of the spanwise 
phase variation and its characteristic spanwise wavelength. When the spanwise phase 
variation is small, the secondary vortices are counter-rotating vortex pairs that 
resemble the lambda studied by Lasheras & Choi (1988) and by N&G. However, as 
the phase variations increase, cross-shear induced by oblique segments of the primary 
vortices in the braid region results in the formation of single clockwise or 
counterclockwise secondary vortex strands that lack the symmetry of lambda vortices, 
and their strength increases with the phase variations. These vortex strands branch or 
bifurcate off the primary vortices and when the strength of the secondary vortices is 
comparable to that of the primary vortices (A@ z n), the bifurcations appear to be 
unstable and continue along the axes of the primary vortices. 

When the phase distribution is piecewise-constant and spanwise-periodic (GSp)  and 
A@ < n (or > n) (e.g. figure 5) ,  lambda-shaped vortices are formed through the 
merging of adjacent counter-rotating pairs of secondary vortex strands each induced 
by a phase discontinuity of the excitation wavetrain. The strength and streamwise 
inclination of each leg of the secondary vortices increase with A@ (and with the 
deformations of the primary vortices). When A@ = n, the deformed spanwise vortices 
resemble a pattern of diamond-shaped cells in the plane (x, z )  view and may undergo 
localized pairings at streamwise edges of the diamond-shaped cells accompanied by a 
substantial increase in the momentum thickness. Although these vortical structures are 
reminiscent of the subharmonic pairing mode identified by Pierrehumbert & Widnall 
(1982), the streamwise wavelength in the present experiments is equal to the wavelength 
of the two-dimensional base flow. In fact, the spanwise-undulated primary vortices are 
formed at twice the excitation frequency through a double rollup and spanwise 
spreading of bifurcations of the primary vortices that are induced by spanwise phase 
discontinuities of the excitation waveform. In common with the subharmonic 
instability of Pierrehumbert & Widnall, the present results show the existence of a 
short-wavelength cutoff for excitation with pairs of equal and opposite oblique waves. 

Similar to spanwise-non-uniform amplitude excitation, spanwise-non-uniform phase 
excitation can lead to significant spanwise and cross-stream distortion of time- 
averaged profiles of the streamwise velocity. The appearance of higher-order 
inflectional instabilities, where broadband perturbations already present in the base 
flow are amplified, results in spanwise-non-uniform concentrations of small-scale 
motion. Power spectra of the streamwise velocity component show that the width of 
the mixing layer increases substantially when A@ = n, as indicated by cross-stream 
spreading of high-frequency spectral components associated with small-scale motion. 
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When streamwise counter-rotating vortex pairs are deliberately triggered upstream 
of the rollup of the spanwise vortices, core deformations of the latter play an important 
role in the subsequent generation of small-scale motion. This was demonstrated by 
suppression of core deformation via appropriate modification of the phase distribution 
of the excitation wavetrain. While the modified excitation wavetrain does not affect the 
formation of the secondary vortices, in the absence of core deformations the secondary 
vortices appear to be weaker and have smaller included angles that are almost invariant 
with downstream distance. These changes are accompanied by a reduction in small- 
scale motions within the cores of the primary vortices, indicating that, in the absence 
of core deformations, small-scale transition begins farther downstream. 

Experimental evidence (e.g. Browand & Ho 1987; Keller et al. 1988; Delville et al. 
1989) suggest that phase distortions of the base flow can also occur far downstream of 
the flow partition and, given their characteristic spanwise wavelength, it appears that 
they are connected with the amplification of subharmonic modes. Thus, it is 
conjectured that far downstream of the flow partition, the excitation is effected through 
the amplification of a hierarchy of fundamental and subharmonic instability modes of 
the two-dimensional base flow where the subharmonic disturbances could be present 
either in the flow partition’s boundary layer or in one or both of the free streams. 
Consecutive subharmonic modes having streamwise wavelengths A,, = nh,, (where 
A,, is the wavelength of the fundamental instability and n = 2,3, . . .) amplify, become 
neutral and finally decay within corresponding finite and partially overlapping 
streamwise domains that extend downstream of the flow partition (Ho & Huerre 1984). 
Near the flow partition, phase distortions of the fundamental wavetrain result in 
spanwise-non-uniform rollup and thus in core deformations of the primary vortices 
that persist throughout the present domain of observation ( X  d 5.45). 

To demonstrate that phase deformations of the nominally two-dimensional base 
flow can recur far downstream from the flow partition through subharmonic (pairing) 
interactions, the flow is excited with a linear superposition of two time-harmonic 
excitation wavetrains, one at the fundamental frequency and the other at the first 
subharmonic. The fundamental wavetrain is spanwise uniform, while the subharmonic 
has a spanwise-periodic and piecewise-constant amplitude or phase distribution. The 
two-dimensional excitation results in a nominally spanwise-uniform rollup of the 
primary vortices while the lower streamwise amplification rate of the subharmonic 
wavetrain leads to spanwise-non-uniform pairings farther downstream. The paired 
spanwise vortices become branched and spanwise-undulated much like the evolution 
of the spanwise vortices in the far field of unforced shear layers. When the subharmonic 
wavetrains have a spanwise-periodic phase distribution with A@ = 7c, the pairing 
interactions are essentially the same as Pierrehumbert & Widnall’s (1982) subharmonic 
instability. 

That the appearance of the secondary vortices (and regions of cross-shear) in the 
braids region results in a substantial increase in small-scale motions within the cores 
of the primary vortices suggests that core deformations and spanwise-non-uniform 
pairings of the primary vortices may be critical to the continuation of small-scale 
mixing downstream from the mixing transition of an unforced plane shear layer. This 
also suggests that phase excitation may enable the control of mixing downstream of 
mixing transition by exploiting spanwise phase and amplitude non-uniformities of 
disturbances at subharmonics of the fundamental frequency. 
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